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Aerofoil theory of a flat Delta Hing at 
supersonic speeds 
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A. Robinson, K.Sc, A.F.R.Ae.S. 

Summary 

L Lift, drag, and pressure distribution of a triangular flat plate 
moving at a small incidence at supersonic speeds are given for 
arbitrary Mach number and aspect ratfb.i  The values obtained for 
lift and drag are compared v.lth the corresponding values obtained by 
strip theory.'? The possibility of further applications of the 
analysis leading up to the above results is indicated.'( 
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1 General discussion 

1.1 Introduction 

The pressure distribution on a flat Delta wing (i.e. an 
isosceles triangular flat plate having its apex pointed ngainst 
the direction of flow) belongs to one of two different types according 
to whether the apex semi-angle of the triangle is (i) greater, or 
(ii) smaller than the given Mach angle.  The difference between the 
two typos of flow expresses itself not only in the final result but 
also in the fact that different methods are best suited for their 
analytical treatment. 

The pressure, distribution on a flat Delta wing whose apex 
semi-anglv, is larger than the given Mach-angle (Case (1)) was first 
calculated by Ward (rcf.j).  It was later obtained as a corollary 
to some work by the present author (rof.2).  The total lift and 
drag of the aerofoil in that case arc also given in ref.2. 

The solution of the corresponding problem for a flat Delta 
wing whose apex semi-angle is smaller than the given Mach -angle 
(Case (ii)) has now been obtained by a method which is a counter 
part of the treatment of Laplace's equation by systems of orthogonal 
co-ordinates.  Results obtained for this case will be given together 
with the corresponding results for Case (i) which are taken from the 
above-mentioned papers.  These results - without the* analysis leading 
up to them - have already been issued in a preliminary note (ref.1). 

1.2 Notation 

p - air density 

V - free 3tream velooity 

M - Mach number 

li - Mach angle 

S - surface area of Delta wing 

b - span 

c - maximum chord 

k - aspect ratio 

Y - apex semi-angle 

x - chordwise co-ordinate (measured from the apex against the 
direction of flow) 

y - spanr/isu co-ordinate (measured from the centre line) 

a  - incidence (in radians) 

ffp - pressure difference between top and bottom surfaces of the 
aerofoil 

*(y) ~ spanwise loading 

Cj, - lift coefficient, based on surface area 

Op  - induced drag coefficient based on surface area 

X - cot u . ton Y 

- 2 - 
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1.3  Results 

by 

(1, i) 

The pressure difference between top and bottom surfaces is given 

Kv ***  

/cot2« - cot2Y 

when |x|cot Y <|y| cot p, i.e. outside the Mach conu of the apex, 

z». 4pV2a 

iJcot^U - cotzY 
tan 

V * x* cotzY - y^ eotz/i' y~ cot it 

when |x| cot Y > \y\   cot /i, i.e. inside the Mach cone of the apex, 

and by 
_   2 pVz a tanzY        L I 

(1, ii)   Sp - -I  .      El 

In case 
(i), 
i.e. 
when 
Y > U 

E« (cot j/tanY) JJi  ten
zY - yz 

in case (ii), i.e. whenY < V  . 

In these formulae p denotes the air density, V the free stream 
velocity, a the incidence of the Delta wing in radians, and Y its 
apex semi-angle; u  is the Mach angle, cot u--/U^ - 1 where M is the 
Mach number, and E' is the elliptic integral defined by 

E'OB) • ("5N/I - (1 - mZ) sin2^ d0.  The chordwise co-ordinate x is 
Jo 

measured from the apex against the direction of flow, and the 
spanvd.su co-ordinate y is measured from the centre-line of the 
aerofoil. 

(The above formulae are still valid if the trailing edge of the 
aerofoil is deformed in any way such that the Mach con ".a issuing 
from the trailing edge do not include any portion of the aerofoil.) 

Let c be the maximum chord of the triangular aerofoil and b 
its span so that the surface area is given by S = -gbc, and the 

2b aspect ratio by A = ~ ^ — = 4 tonY 
s  c 

distribution •fc(y) is given by 

2pV2a (c -  lylcot Y) 
(2, i) «(y) = 

e(y) = 

Joot2U - cot2Y 

Then the spanwise lift 

when  c cot Y < |y|cot n 

2pV2 a 

r~~2 ? 7 cot u  - cot YL 

+ (c - y cot Y) tan 

(c + y cot Y) tan"1 tsSSZ "  COt1f • ° ~y  "jtY)t 
M cot/i + cotY  c + y c:otY? 

•1 /coil* - 
Jootu + 

- cotY c + y cotY 

cotY  c - y cotY J 

when c cotY > |y| cot u 

and by 

(2, Ü) *(y) 
2pV2a 

•Ja2  tan2Y - y2 in case (ii) 
E«(cotY. tanY) 

The lift coefficient based -13 usual on surface area is given by 

- 3 - 
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(3, i) C^ = if a tan V in Caao (i),      and by 

2mtonY in case (U)    . 
%• 

E'(cot »/. tan If) 

Tho ratio of this coefficient and of the lift coefficient 
predicted by tv.c-dimensional ("strip") theory is shown in Fig.1. 
It depends only on the parameter Xs cot V.  tanY.  Fig.2 giver CL 
for various apex angles (or aspect ratios) plotted against Mach 
number.  As mentioned in ref.2 CT, ir. equal to its value by strip- 
theory if Y > <i(Casö (i)). 

A simple dimensional argument shows that the centro of pressure 
coincides with the centroid of the v.-ing (xg = - -£•,  yQ = 0, see 
Appendix V). 

It -..•ill be seen from formula (l.i) that in Case (i), the 
pressure remains finite at the leading edge, and wo may therefore 
assume that the resultant rerodynaraic force is normal to the plate. 
This implies that the drag associated v/ith the lift equals the 
product of lift and incidence (in radians).  To avoid some of the 
confusion which has arisen in this connection we shall agree to call 
the whole of this drag "induced drag".  The corresponding coefficient 
Gj)i will again be based on surface area.  In Case (ii), formula 

(1, ii) shows that at least according to linear theory, there will be 
infinite suction at the leading edge, as in subsonic flow, and of the 
saute order of infinity.  This indicates the presence of a 
longitudinal "suction force" which tends to reduce the induced drag. 
AB a result, the induced drag no longer equals the product of lift 
and incidence. 

As formulae (2, i) and (2, ii) show, the spanwise lift 
distribution is of elliptic shape as long as Y < /', i.e. in Case (ii) 
but not in Case (i).  The value of CD^ for a given elliptic lift 
distribution under low speed conditions is known to be 

CL
2
 ._ .... „. _ Z    °Di 

XJ 
so that the value of measures the deviation of the high 

speed regime from the low speed regime, at least for Y < fi.  This 
ratio which again depends only on the parameter \m  cot u  tan Y is 
plotted against >. in Fig.3, and for various apex angles or aspect 
ratios against Mach number in Fig.A. 

Analytically 

(4, i) 

(4, ii) 

°D< 

^A 
ttoot /'  tanY in Case  (i),        and 

1      = 2E' (cot U tanY) - tanYVcot2Y - cot2p in Case (ii). 
Ci/AA 

For a given spanwise lift distribution, tho trailing vortex field 
in regions far behind the aerofoil is the same in supersonic as in 
subsonic flow (compare ref.7).  Accordingly wo may subdivide the 
induced drag into vortex drag, which is associated with the trailing 
vortex field and is the same for supersonic as for subsonic flow, 
and induced wave drag, vrtiich is peculiar to supersonic flow.  The 
corresponding "vortex drag coefficient" for a Delta wing equals 

Cj^/rcA for Y < /.'.  For Y > u  this coefficient increases, for a given 
lift coefficient, as the spanwise lift distribution curve deviates 

-A- 
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fron the elliptic shape.  Inspection of Fig.3, then shows that even 
-.•nun Y < U (CasQ (ii)) there still is an induced wave drag in 
addition to the vortex drag.  Thus while this case shovra some 
affinity with subsonic conditions, the flow is still not truly subsonic. 
However, as shown by formulae (3, ii) and (4, ii), as the aspect ratio 
^._._ *   -   A    .    fcr.2  __ Ä_ ^  

given by low speed theory.  This is in agreement with an argument 
tends to ">, Cjj $ HL a 1 while CD- $ -it- , both of which are the values 

due to R.T. Jones (rof .8) which tends to show that for pointed wingB 
of infinitely small aspect ratio lift and drag are given by the above 
formulae in supersonic as in subsonic flow, and servos as a check on the 
results obtained here. 

2 Analysis 

2.1  Pseudo-orthogonal co-ordinates 

Let x, , X2, x* and y.,, y2, y» be two sets of variables 
interconnected by the relations 

(1) xi " fi (y1» *2» ^3) »  i a 1» 2» 3 . 

y3 *> gj (*i t «2» X3) » i = 1. 2, 3 . 

The transformation is supposod to be non - singular in a given 
8f *g region, \-J.\  * 0, |^ij * 0. 
3*k 

We have 

(2) dx4 
3 3f 

a £ _-i dyv 
k=1 ^  k 

A = 1, 2, 3 
\ 

Hence 

(3) ax.,2 - dx2 

where 

U) 

- dx,2 » h,2 dy.,2 - dy 2 - h,2 ay. 

+ 2h12 dy1 dy2 + 2h,3 dy., dy? + 2h2j dy2 dy3 

* -0* <SS <S$ 
tfy2^    \QyzJ 

v2      «-^2 

WJ *V>yJ    \ByJ 3> 

and 

*   \*jA*rJ    Hr/^v   w/v«v 
j,k • 1,2,3, 3* k. 

Now assume that the functions h .k vanish identically.  In that 
case 

(5) 

äk 

dx,2 - dx2
z - dx3

2 » h.,2 dy,,2 - h2
2 dy2

2 - hj2 dy3 

- 5 - 
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If x1, x2, 
x3» are rectangular cartesian co-ordinates In three 

dimensional apace, '.r.i another set of co-ordinates y^, y2( y-t  is 
given, such that the functions h^ vanish identically, then y«, j'2, >'3 
will be said to be pseudo-orthogcnal co-ordinates in the given space. 
As a simple example of a system of curvilinear pseudo-orthogonal 
co-ordinates, we nay mention the pseudo-orthogonal counterpart of 
the familiar spherical co-ordinates. .It is given by 

*1 • y-| cosh y2, x-2 ~ v1 s*jnh ^2 C0B v3»  x3 = y1 *&& Tfz 8*n y3 

V.'e shall require an expression for the differential parameter 
92rt        92A        q2rt 

• -       11 - •   i • in terms of general pseudo-orthogonal co-ordinates, 
Bx1"    *x2      ax3^ 
where <j. is on arbitrary scalar function.      It is shown in Appendix I 
that 
(6) 

*JL -SJL - 2JL .    1    [JL(Ä i£) - JL_fhh *£\. a ("hih2 jcAl 
&*j*  fx2

2  ?x3
2  h^hj ^ V hl t^J     3y2V h2 3j2J    3y3Vh5 3y3/J 

2.2  Hyperboloido-conal co-ordinates 

The solution of problems connected with triangular aerofoils 
moving at supersonic speeds can be effected by the introduction of a 
special system of pseudo-orthogonal co-ordinates.  Writing x', y', B' 
and r, H, v for x^, x2, x,, and y^, y2, yj, respectively, the 
connection between- the rectangular cartesian co-ordinates x', y', zx, 
and tht; special system to be introduced, r,M tv , will be given by 

h/k2 - h2 kx/k2 - h2 

2   2 
k -v 

\ 

hk 
\ 

•where k and h are positive constants, k > h.  The intervals of 
variation of r, U, v  will be taken aB 

\.i <  r < oo k <: u < °° h < v < k 

Eliminating P and v  from (7) we obtain a family of surfaces 
with r r.s parameter, 

m x«2-yi2 m  ,,2 »«a 

Similarly, eliminating r andv , and r and V , respectively, we 
obtain two more families of surfaces, 

(9) 

and 

(10) 

x«2   y'2 

2 2 2 2 U   - h       (T - «r 

x,2          y,2               z,2 
2 

V ..2 ,2,2 2 v    - h       k   - v 

.) 

(8) represents a family of hyperboloids of two sheets while (9) 
and (10) are families of cones.  This justifies the name "hyperbolcido- 
conal co-ordinateB" for the system under consideration.  They are the 
pseudo-orthogonal counterpart of the system of orthogonal co-ordinates 
known as "sphoro-^onal co-ordinates" (rcf.A). 

-6 - 
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Equation (7) shows that for the specified interval of variation, 
the co-ordinates 
half of the cone 

r, u,v can onlv represent points i 
xi2 _yi2 _ zi2 = 0 (i.e. x« > 0, 

inside the positive 
x'2 - yi2-_ .2 

By solving (7) for r, tiff  it 1B found that to every point satisfying 
x' > 0, x,z - y'2 - z*2 > 0 there corresponds exactly one triplet 
r, /., 1/ inside the domain of variation of these variables.  On the 
other hand, to each triplet r, u, vthere correspond four points 
x', y'1 z',  according to tne determination of the square roots in (7). 
The ambiguity can he avoided by writing U  and v as elliptic functions 
of new variables, but this procedure will not be required in the 
present report. 

For /J -^00, the cones of the family (9) tend to approximate the 
cone x'z - y'2 - z,z = 0, while for u—*k they tend to become equal 
to the (two-sided) angular region In the x', y1 piano given by 

o      o 
S~- - Jf      - > 0.  On the other hand, the cones of (10) approximate 
ir  kz - h^ 
the 

k   k* - h' 
asv—*k, and the y-axis (x1 B 0, z' = 0) asi>—}h.  Thus, the 
intersections of the u-cones with the plane x1 = 1 are ellipses, 
varying between the circle y'2 + z'2 = 1 and the slit a' = 0, 

2 
The intersections of the v-cones with the same plane 

>0). 

/ 2      2    "\ 
complementary angular region in the x*, y' plane ( x— - J  • < 0 ) 

y'2< 1 -\ 
k* 

are hyperbolae (Fig.7). 

We shall now calculate the quantities h., h«, h,, h.p, h.,, h«. 
defined in para.2.1 above.      We have 

(11) 
ax' 
?r 

iw          ?xj_ _ 
hk            8/i hk 

3yt 

9r h«k2-h2 

ay1 

a/i 

a»« y/i2^2 42-v2 D„» 
9r k/k2-*2 B* 

2ÜLarJL 
8v  ~     hk 

= r 

P2T2 
U <Jv -h 

h/k2-h2    fü^-h2 

u \fk2-VZ 

k\/k2-h2     Ti^-k2 

ay'  _ 

0v 

az' 
av 

r2^2 
v v ^i -h 

h"'k2-hz'    /i/2^? 

; v /J2-k' - r 
*JP-?      :.2-»2' 

\ 

Hence 

-7 - 
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2 /..2 

"2 VW       (,81.;       Vj*/       (^ - h2)(„2 - k2) 

h,2 - -faiiY • I'äLY +^y - / (?2 -„»ft , 5        V&V    \*»S    \*/     {y2 - h2)(k2 - vz) 

,r- ^ifr)&)-(§£)&)-mo®--* • 

-* -(&)($ - GO (# - (fcXtf)" ° 
The last three equations shot? that the system of co-ordinates r, U, v 
is in fact pseudo-orthogonal, as asserted. 

Let* be an arbitrary scalar function.  Then, by (6), 

'-Jc2Xk2-*2) a^    -8$    -a2*    _7(fl2-h2)fr2-4i2)(/i2- 
8x«2     3y»2     9z'2    • r2 fa2-!/2) 

fa / r2 fa2-,2) g\ .. 2 IkMiM   aA 

3//fr-2-h2)(k2-^ a*; 
"9" >/^2-h2)^2-k2)^ 

Or 
(13) 

*   -a2.   . 
• 8x'*    8y' 

d * 
—i 
8z'' 

1 
? [o

2*,2) JL (r2 a). Jö^nM ftQS&iStö JJ.) 

y^2-h2)(k2*2) A(7(,2^2)(k2-,2) g)J 
A scalar function * which satisfies the equation 

(14) äf*_-- fl2* - a2» • o 
9xi2  3yi2  9Bi2 

will be called a hyperbolic potential function (or, alternatively, a 
pseudo-harmonic).  Equation (14) is equivalent to - 

-8 - 
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(15) 

i**ji$$-Jo**M 3W 

- J(v2-h2)(kV) £ ^W)(kV) §£) - 0 
in hyperboloido-conal co-ordinates. 

2.J  Tho triangular aerofoil 

Consider a triangular aerofoil of span b and maximum chord 
length c in a uniform supersonic airstream (Fig.5).  The linearised 
equation of stationary supersonic flow is (e.g. ref.7) 

(16) 
2 »2« A 
3x*  V 

a2* 

3Z
2 

= c 

1 • H • S » K o^S the Äiaon number, V the free stream 
o 

where n* = M' 
velocity, and a the velocity of sound; x ia the longitudinal 
co-ordinate, measured from the apex of the aerofoil against the 
direction of flow, y the lateral co-ordinate, positive to starboard 
and negative to port, and z  the vertical co-ordinate, positive 
downward.  * is the induced velocity potential so that the three 
velocity components are given by 

- V + -r- , r—  , and —— 
3x  3y     3z 

respectively. 

In accordance with the conventions of linearised theory, the 
incidence of tho stream-lines at the aerofoil is estimated at the 
vertical projection of the aerofoil into the x, y plane, thus 

(17) 
1 fm\ 

\ 

where s is the slope of the aerofoil at the point in question, on the 
upper or lower surface, as the case may be. 

* must be continuous everywhere except possibly across the wake of the 
aerofoil.  In the present analysis we assume that the aerofoil is 
completely inside the Itach cone issuing from the apex, so that * 
must be a constant, and may be assumed to vanish, outside the cone. 
In particular, thiB yields the condition 

(16) I for a* - n2(y2 * a2) . 0 

The assumption that the aerofoil is inside the Mach cone issuing 
from the apex means, in symbols, 

(19) 
2« 

n • cot li < r-— • not Y 

where Y is the apex semi-angle of the aerofoil, and u is the Mach 
angle. 

The longitudinal component pf induced velocity is ££. , hence, 

by the linearised Bernoulli equation, 

(20) p • p - n V — V      *°° ?x 

- 9 - 
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where p is the pressure at the point in question, p^thc free stream 
pressure-, and r the air density.      The excess pressure up is therefore 
given by 

(21) op -PV 

2.4  Transformation into hyperboloido-conul co-ordinates 

Put x = - nx1, y = y1, z = z'.  Expressing equation (10) in 
terms of x', y', z1, we then obtain equation (14).  The span of the 
triangle remains unaltered in the- transformation, while the chord 
is magnified in the ratio of 1 : n.  The £aoh cone x2 - nz(y2 + z2) = 
is transformed into x'2 - y»2 . zi2 _ o. 

Next, transform into hyperboloido"conal co-ordinates, as by (7)» 

•j.ith k = oot Y, h = vcot2Y -  cot2/i .  For these constants, the 
leading edges of the aerofoil determine the angular region in the 
y'i y' plane to which the cones of the family (9) approximate as 
V —k.  The triangle itself becomes part of that region. 

In order to express the derivatives — and — of 'in arbitrary 

function f in terms of hyperboloido-eonal co-ordinates, we ilrst have 
to calculate the derivatives of r, /', v  with respect to x* and z1 in 
terms of r, /', and v.     The calculation of these quantities is simpli- 
fied by the fact that we are dealing with pseudo-orthogonal co-ordinates 
(sec Appendix II).  Using equations (11) and (12) we find 

(22) ^=i^ 
3r_ 

ax« 
- HI 
~ hk fx'              hkr (p2-v2) 

3v           «(v2-h2)(k2-i^) 

3x'               hkr (w2-^2) 

9r_ 
• /  2 , 2    /, 2    2 

_v f -k     vk •* 

k yk2-h2 

*/•'   _ /'(n2«*2) V/^-k2   A2-*'2 

9i;   .       P(v2-to?) Ju2-k2  JVL
2
-V

2 

•               k/kte r(/A*2) 

\ 

Honno 

(23) 2t.2* L> a - ^^-h2?t^2) . g - Kv2-h2)(k2^ 
ax  nhk [_* 3r    r (j^i/*) M    r (u2-v2 

and 

3f y^-k2 7k2-<;2   ?f | ;*(fl2-h2)  8f  v(v2-h2) ^ 3f 1 

k73£*   L" •>  r(^2) " ?"  r(*^2) ' H 3z 

If the induced velocity potential is given as a function of 
r, jiT, and v, then the excess pressure at any point will be found 
from (21) and (23).  Also, the corresponding shape of the aerofoil 
will be found from (17) and (24).  It is to be noted that the 
differentiation, as by (24), has to precede th.. passage to the limit 
V—»k.  The induced velocity potential, apart from being continuous except 

possibly across thi- wake of the i-rofoil also )u.i-  to satisfy equation (15), 

-10 - 
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In order to ensure that #—}0 as fi->°° for any given r and v, 
as required by continuity, we have to take <i » «>.  Hence 

(28) 

and 

(29) 

«00 «cf" 
Ju 

dt 

ft   a 

'"    (t2^c2)s/(t2-h2)(t2-kT) 

C Wk2-v2 

Wk2-h2 2 J„    . 
dt 

(t2^2) y(t2-h2)(tg^2) 

, _r/ST At the aerofoil (i.e. for p =jO_gg have, x'  = EL , y   ^ _. 
X«2 - yl2  _ T2t   and  80 P/]j2_^2 a/xl2(k2^2)   _ yt^^        JQ^  ^y 

partial integration 

lim 
*»-»k l^j dt 

"   (t2-k2)/(t2-h2)(t2-k2). 

11m 
*i-»k 

11m 

"* a"y£3. ty^-h2]^ »Ct/jq?), 
dt     | 

V*2-*2 
W-»k T^ 

y^-k2 . »J~t£-h2     kVk2-h2 

Hence, at the aerofoil (but not elsewhere in the x, y plane) 

"h2 x2 - k2y2 

(30) 
k2(k2-h2) 

The value of the constant C can be determined by means Of 
equation (25).     We have, using (2k) 

2k = ±(zg(u)) „,(„) +z£S 
9i      8i 9s 

t.A    A2-k2 ^k2-^     <i(fi2-*2)     r7/A*2v/k2-i>2     dg 

k/k^-h2 r(*£*2) k/k^-h2 ««  

Jr at .    «     k2^2 /T^2"] 
(t2-k2)y(t2^2)(t2^2) 

el"/"—:   « 
l> (t2-*2) 

,2-h2  »JtWJT*? 
)y(t2^2)(t2Mk2)     k2(k2-h2)     J*2.k2     k2(k2-*2)(*2-^)_ 

As /I tends to k, g^Jtfdfc^?^ tends to 0, so that p. is in fact 
k^k^-h*)^**/*) 3* 

Independent of v  and r at the aerofoil, as required.  Also, as before, 
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The total lift L on the aerofoii. is obtained by integrating *(y) 
along the span, from - -_ = - c tan Y to -L. = c tan '(", 

(3M % pV2a c2 tan^f 

B1 (cot ti . tanY) 

The lift coefficient CL, based on surface area, is given by 

CT = ——— , S = c2 ton Y,  or 
| PV

2S 

(35) 

(36) 

CT 
2itatan Y 

E1(cot ».  tanY) 

The longitudinal component of the pressure integral is given by 

D   La m g PV
2aZ=2tan2Y 

P      E«(oot U.  tanY) 

However, tho induced drag DJ (defined t.s the total drag associated 
•with the lift, para.1.3) will not in general be equal to Dp but will 
be rather Binr.ller than that quantity.  In fact, by Equations (31) and 
(32), the longitudinal component of induced velocity, and hence the 
pressure difference, both tend to infinity at the leading edge.  As 
in subsonic flow, (compare ref.5), this indicates thu presence of a 
suction force -..hope longitudinal component TV acts in a direction 
opposite to that of the longitudinal component of the pressure 
integral, Dp.  It follows from the nature', of this force that the 
contribution to it of any particular element of tho leading edge 
dependB only on the local conditions (e.g. the looal trend to infinity 

of —L)  arid not on conditions elsewhere in the field. 
3x 

Let d* be an element of tho leading edge of the aerofoil, and 
assume At to be yawed at an angle p, (Fig.6).  Let .x0, y0 be the 
co-ordinates of the midpoint of dt , and dy the length of its 
lateral projection.  Assume that on approaching d£ longitudinally 
against the direction of flow, 3* is given by 

fix 

N 
9x J XQ - x 

+   (finite terms) 

on the upper surface.  It is then shown in Appendix IV that the 
longitudinal component d Dg of the suction force contributed by it 
equals 

(37) ft Ds a C 7c p ^ taxi$ - cot2 v   *y 

where u is the Mach angle, as before.      The total suction force is then 
obtained by integrating d Dg across the span of the aerofoil.      For tho 

Delta wing, C = 
VI V (cot ». tanY) 

,= ±l|..Y> 

Hence 
Do - ft pV2tx2c2 tan^Y V cot2Y »• oot2^ 

2 [r> (cot u . tunY) ] 2 

and 

- 14 
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/,„x n       T,       n       xpV2a2c2tan2Y     K P V2a2c2tan3Y>/cot2Y - Cot2*i 
U9; Di = D

p - 
D3 = —; 7 =—• -rrx  

* E' (cot U . tanY) 2 [ß> (cot »i. tanY) J z 

Let Cn^ be the Induced drag coefficient based on surface area, 
Di = C^ . i-pV^.      Then , 

(*°)   Cn, • -B - • *" Y    • *   2 E« (cot <i. tanY) - tatficot^r - cot2w 
1      [E«(cotn . tanYfPL J 

andt observing that the aspect ratio A equals 4 tan Y , 

0D« 
(41) 

cv^* 
2 E'(cot« . tanY) - tanY Veotnf - cot2»i 

This completes the justification of the data given in para.1.3 in 
relation to Delta wings whose apex semi-angle is smaller than the 
given Mach angle. 
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Awwndixl 

Dt* second differential parameter In a 
pseudo-orthogonal system. 

f 

In this appendix we shall use the notation of the tensor 
calculus. Including Einstein*s convention.  Accordingly, wo have 
to replace Xj, x2, x, and y^, y2, y, as used in para.2.1 by x

1, x2, x?, 
•*>d y" , y2, y3 respectively. 

Let g. he the fundamental covariant tensor of the quadratic 

differential form (dx1 )2 - (dx2)2 - (dx3)2, i.e. 

feu,] 
1 C 0 
0-10 
0 0-1 

, so that g = (gjy| 

If thu xJ are rectangular cartesian co-ordinates, and the yt 
form a pseudo-orthogonal system, then by (5), the above tensor la 
given by 

2 

K»] -h2
2 0 

0  -h. 

in the yi  co-ordinates. 

> g |8iJ N2h
2
2V . 

The corresponding contravoriant tensors are 

IM- 
1 ^  o" 
0 -1    0 
0 0 -1 

and P]- 
Vh.8 
0 

0 
-1V 

0 

0 

-VH.2 

The expression J. -1- r8 g^ -§£? 1 is called the second 
/g 8? V     3xV 

differential parameter iof the (arbitrary) scalar functions 4.  This 
expression is known to be on absolute scalar, i.e. 

Vg SxiV     3xV   ^g ay11-.     3yV 

In the particular case here under consideration, this equation 
becomes 

a2«   a2»   a2» 
Ox^)2" Ox2)2" (3x3)2 

h^ghj |_ay1 ^ «1      9y1 /     ay2 V h2    ay2/     8y3 V h3    8y3/J 

which is equivalent to equation (6). 

-17 - 
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II 

emulation of some partial derivativ«. 

using the notation of pexa.2.1 v.ts require expressions for 

«A , J * 1, 2, 3» k » 1» 2, 3» in terms of y , y2, y_ .     tfe have 

•% 3 
**} - ^ aJk ^k 

_*— «     - Üä .     Solving for dyk , 

ayt = 
3=1 

dx, 

-1 

^ere [^ i- the inverse matrix^ [a,,] , ftj " W ' 

the other hand, evidently **i = ^ ' 

LA, 
2 - 2^Ma 

3y2 

3f2 

3y5 
V 

„ , the ahove matrices is identic*! «ith M 80 
The second of the aDove w 

that the first must be [AkJ ] •  Hence 

!&„E£i/N2 

3*1      3yi 

Pi^üVh.,2 

BX,    3y2 

!8io-2£Vh3
2 

3
*1     3y3 

881 - - ^N2 

8x2 
8y1 

2&   -   ^22 

3x2 9y2 

~-3     »yi 

Ä = 8-^b2
2 

a— _ 

3jl 
3X2 

3f 
^3 

3* 

ag 

7x3 

Ea 

8i2 
3y2 

3f» -8iVH3
2 

*3 

^„e are the required expressions. 

. 18 - 
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Evaluation of a definite integral. 

The integral to be evaluated is 

4* 
U2 f    say, 

nee 

TAere   "J 

put t = k— the elliptic function 3n u being taken with modulus 
sn   u 

.     Then 

= k2  OB2 Ü 

k on u dn u auB_kosudsudu 
OX  « ••    ' o 

Ml* U 

Henoe 

Jl Jo k> * 
_   .„a   /the COmplete elliptic integral of tbs 

where K is the quarter-period, ^tne ccnp* 
f*/2 d^ .     integrating, we obtain 

first kind)   K = J 7—-*i""  2V Jo     ,/ 1 _ nr sin P 

^ Is the owlets elliptic integral of the second kind, 

s . f VVl - m2 sin2* d* .     Similarly 
Jo 

Lkh2      1^J 
2 

fa\   udu •• 
kJd-o2) 

sn  u od ^kh^o'kH^"*! 

Hence _ &\ _/ \ 

-• ."'.»'J* 
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Appendix IV 

Calculation of the suction force. 

A3 in para.2.6, let du. be an element of the leading edge of the 
aerofoil, yawed at an angle ß.  Let XQ, y0 be the co-ordinates of the 
midpoint of d£, and ay the length of its lcteral projection.  As the 
suction force depends only on local conditions, we may modify the 
boundary conditions elsewhere at pleasure.  Accordingly, wo nay assume 
that d-t forms part of an infinite straight leading edge (Fig.6).  It 
is therefore sufficient for our purposes to calculate the suction 
force at the leading edge of a yawed infinite flat plato.  The type 
of flow is again assumed to be such that 

3» 

3x v/*o " 
+ -  (finite terms) 

The free stream velocity is -V. 

According to a- not; well-established argument (e.g. ref.6) the 
flow round an infinite aerofoil yawed at an angle ß to the free stream 
direction is the resultant of (i) a uniform field of flow parallel to 
the leading edge at a velocity -V sin ß and (ii) a two dimensional 
field of flow at a free stream velocity -V cos ß in planes normal to 
the leading edge.  Field (i) does not affect the dynamic reactions at 
the aerofoil, so that we may confine our attention to Field (ii). 
Since Field (ii) can produce no reactions in a direction parallel to 
the leading edge, it follows that 

(a) dB«: cos ß d D' < 

where d D' g is the suction force produced by Out,  against the direction 
of the free stream of Field (11). 

Let x*, y*, z1 be a new system of co-ordinates, obtained by 
turning the x, y, s systeu round the z-axis through an angle ß, i.e. 

x* = x cos ß - y sin ß 

y1 • x sin ß • y cos ß 

\ 

\ 

= z 

The .linearised equation for the velocity potential is 

cot 3**  8** tt  _ n V   —-m ~  —if - —* - U 
8x" 5* 9z* 

For the primed co-ordinates', this equation is carried into 

(cot2tfoos|- ain2ß) 2*    + (cot2n sinV - cos^) äi 
3x« 3y.2 

+ 2(cot2n - 1) cos3 sinß     8^    - 2^_ = 0    . 
• dx*dy<     ?s,z 

Now in Field (ii) both the total velocity potential, and the 

induced velocity potential satisfy JÜ- = 0 so that the above equation 

becomes 

9y! 

- 20 - 
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(«) 
.2 3" 

3x" 
= 0 

«here 
q2 = sin p - cot ü COBT> 

(43) la in fact the linearised compressible flov.- equation 
corresponding to the component free stream velocity in the direction 

of the x'-axis (Mach number 11 «v 1 - q2 '• ii cos ß). 

It was assumed above that the total velocity in longitudinal 
direction is of the form 

>/*b " x 
+ (finite - i.e. bounded-terns) 

This is the resultant of the longitudinal component of Field 
(i), which is bounded, and of Field (ii).  Hence the component 
velocity of Field (ii) in the direction of the x'-axis is of the fort. 

C 

or 

cosßjxo - x 
(bounded terms) 

A - X« 
+ ........... (bounded terms)- 

where x'Q is the x' «-co-ordinate of the midpoint of &<  (see Fig.6) 

and (To . c_;_. 
VOOB ß 

iigain, it follows from the character of the suction force as 
depending only on a local singularity, that the suction force per 
unl£ length in the direction of the x'-axis (ff, say)»depends only on 
p, C, and the parameter q (representing the Mach number lT = M cos p ). 
To calculate it, we consider the special case of an infinite flat plate 
of constant chord width "G at an incidence a in a uniform stream of 
velocity V, the corresponding Mach'number being M < 1.  It is known 
that - by linearised theory - the longitudinal induced velocity at the 

plate 1B given by v a — V I SJfc x , where the leading edge of the plato 
q V . x' :.. 

is at x* = 0, and its trailing edge at x* = - c .  H*-nce, in the 

notation used above, C-= — V vc .  Also, the total pressure per unit 

length of the span is given by E = %poV22L .  Now the pressure aots 
... 4 

in a direction normal to the surface so that there is a backward 

component of magnitude L a e itpe? i— = TCq/ C2 per unit length.  AB 

there can be no resultant drag in two-dimensional potential flow (see 
ref.9, for oomprussible fluid flow), it follows that the suction force 
exactly balances the above backward component, or 

(i»4) ff= «q pO2 

For q = 1, this formula was first given by Grammel (compare ref.5). 

It follovs from the character of the suction force that (i»4) holds 
not only for the case for which it has been established, but also for 

- a - 
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'any other eaee «1th equal q, p, ?.  In the particular circunatanoea in 

«hleh «s are Interested & =» £ , q • sin2^ - oot2f coaHß, and so 
coaß  

(45) o* a upC2 Jtan^ß - cot2ji   , 

This Is the result stated    in para.2.6. 

f 

I 
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Appendix V 

Solution« in terns of Lame function». 

The differential equation of a peeudo-harnonic in hyperbcloido- 
eonal co-ordinates is (compare para.2.2, equation (15)), 

UM) A (r2 ||)-/^2-h2)(*2-k2) ^(7(/i2_h2)(p2.k2) ») 

-V<v2-*2)(k2-^) ^(7(v2-h2)(k2-^ g.) « 0 

We try to find solutions of the form * = r" *', where ¥ is a 
function of Ji and v only.  On substitution in the above equation we 
have 

(h6)   »(n+Qdi2-«*)* -/(AW) |7^2-h2)(^-k2) g) 

- y(,2-h2)(k
2./) ±.(J(V

2.h2)(k2-/) fi) To 
Next, vre assume * to be of the form *' = S(ji) H(v).  The 

differential equation (46) now becomes 

H(») f"n(n+l);i2 G(*0 - 2//(2^2-h2-k2) 3£ - (/u2-h2) (p2^k2) 4*1 
L dP <mzJ 

- C(*i) fn(n+l)i/
2 H(f) - 2v(2i;2-h2-k2) S. -  (v2-h2)(v2.*2) iS« 0 

that 
In order that this equation should be satisfied it is required 

-1- Un+OM2 0(1.) - 2,(2.2-h2-k2) & - („2-*2)(„2-k2) 4 1 
ß(/i) L dp dp'2 J 

 !- rn(n+1>
2 H(„) - a/(A,2-h2.*2) £. - (V

2-h2)(v2^Z)  «&] 
H(v) L * * J 

• const, at p(h +k ), say, 

«bare p is an arbitrary constant.  It follows that G(u) has to 
satisfy the differential equation 

rn(n*l)*2 - p(h2+k
2)l G(u) - M&2-*?-*2) & - (^2-*2)0i2-*2) 4-0 

I J d/i dji 

with an exactly sirailor equation for H(v). 

Equation (47) is Lame's equation (compare ref.7).  Por given 
n, p can be determined in (2n + 1) different ways, so that G(*0 is of 
one of the following four forms 

K(u)  » (s^lP-faf2*  ... ) 

L(*0 - V|^-h2| {^pri^p-K ... ) 
M(*) -J\f-k2\  (a^-V^* ... ) 

H(<i) «V|^-h2| Ji^l (^^^-4, ... ) 

-23 - 
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•where the expressions a0rf
l4e1l'

x"2t a0V
n"'1+a1JJ

1-3, ^iP"^^^* ... , 
ttoj^^+a^j^***. ... , are all polynomials in u. 

Thus, for n = 0, the only solution of the above mentioned type 
is (except for a constant factor) 

Ej(nj = 1 

Tor n => 1, there are three independent solutions, 

•iOO - K,   B2(W) = 7 In2.*21.   E3(H) = {\M\ 
Assume that E^(M) has already been determined for given n and for 

an appropriate p.  Then a second solution of Irak's equation is 
given by 

JÖn> - *£(«) \° dt 

[^(t)2]7l(t2"-h2)(t2-k2)| 

Thus r dt 
J" V(t2-h2)Ct2^2) 

. h   «'Ofc:. 

F;(H) » c j dt 

'?iV; P2(W) -/is? r 
1        ji. 

" t2 7(t2-h2)(t2-k2) 

dt 

" (t2-h2)3/z ys? 

p^c#i) - 7ji2-*2 | dt 
'fi J^2 (t2„k2)V2 

From the above particular solutions of Lace's   equation we then 
Obtain "normal" pseudo-harmonics of the form r11 &(*0 H(V).     For 
instance, 

• «• 
L/.2u2 

r F^(/i) B"[(v) 

is the solution used in the body of the report. 
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position of the centre of pressure. 

I 

The spsznsdse position of the centre of pressure is y »0, for , 
ns of symmetry.  In order to find the chorduiae (longitudinal) 

position of the centre of pressure, let X(x) be the pressure integral 
over the span of the aerofoil for given x, 0 > x > -c.  Then the 
longitudinal position of the centre of pressure is given lay 

i -c x X(x)dx 
r-o 

i X(x)dx 

Now X(x) is independent of the magnitude of the wing chord, o 
(compare para.2.5).  By dimensional analysis it therefore must he 
of the form X(x) a f(a)pV2x, where f(a) is a function of the incidence 
a only.  Substituting this value of \(x) in the above integral, no 
obtain 

/ 
f(a) p V2x2dx 

.--c 
I x2dx 

Jo Jo r Jo 

2o 
*o r f(«) pV2xdx xdx 

3 

This is the result stated in para.1.3. 

\ 

25- 

JIHl-J ^CSTF" 



IN* ltJUA» •»• 

«FT A*HO 1131. 

FIG. I. 

it'- 

k 

• 

1   u 
1   -J   1 1    ••   3 

0 

. • 
5H 
Is« 
X  < F 

•    i    i 
, 1 

4 

«1 

O 

• 

u 

U. 

o 
ul 
X 

s 

< 1 •                H i • f » 

o z 
5 
§ 
US 
ü 
of 
< 

ft 

u. 
3 

\D 
/ 

r 
:^&*3?^=£&^ :(9» 



:N9 Lt}J7?A 
*EI»T. Amno tisi. 

FIG. 2. 

VARIATION   OF THE LIFT COEFFICIENT OF 
A DELTA WING  WITH MACH  NUMBER 

FOR  VARIOUS  APEX   ANGLES. 

^1 

»T*»*S* 



-•,m^-m^mmmmfmsx^Mmiia^fim^^^:t^r» ^StfSfc-flfV* 

i1 Nt....J?AUUt 
Rtrr. AIKO «ist 

FIG-3. 

'!'.' 

EW& 

JAM'-.- 
.«::/••. 

*••.' : 

I. i," 

.*: 

8*3^;***'-- -^ lüS-SSKSÜ&E: 



iS*.;:»»** 

>** s. A-ji i«., •."•...'..     .••:.!..•.'• -••".•<•"•.«,-.—v.   -j. '• :-.:-'.V.'.[-"". -. .•",-"- - 

^fT. ««O tim" 
FIG- 4- 

•-'.. *• 

K 1 -f INDUCED DRAG OF A 

*».,*'"" la- * 

1    -***•-« **'•..   ' 



m»....««ft> KEPT. fcERO t»l- 
FIGS. 5, 6. 

«> 

d 
£ 

fe 

in 

ü 

S 
/ 



8 
© 

»1 

-/e- 

IC12  0»*  •U,0dM 
B-|«Sfl**N 



r&j •••%'•'•   JU-^v1"" '" -**V_.i*f.»-      7-.~ 

»> -'JLT'.J '••• ••*• 
'•>* 



RESTRICTED 
TITLE:  Aerofoil Theory of a Flat Delta Wing at Supersonic Speeds 

AUTHORfS):  Robinson, A. 
ORIGINATING AGENCY: Royal Aircraft Establishment, Farnborough, Rants 
PUBLISHED BY:   (Same) 

OTO- 9106 

(None) 

(Same) 

Sept '46 Re str. Gt. Brit. I diagrs, graphs 
ABSTRACT: 

Lift, drag, and pressure distribution of a flat Delta wing moving at small incidence at 
supersonic speeds are given for arbitrary Mach number and aspect ratio.  The lift and 
drag values obtained are compared with corresponding strip theory values.   The possi- 
bility of further applications of the analysis leading up to the above results is indicated. 
The calculations are a counterpart of the treatment of Laplace's equation by systems of 
orthogonal coordinates. 

DISTRIBUTION:  Copies of this report obtainable from Air Documents Division; Attn:  MCTDXD 

• DIVISION: Aerodynamics (2) 
SECTION: Wings and Airfoils (6) 

ATI SHEET NO.:   R-2-6-HL2 

SUBJECT HEADINGS:  Wings, Delta - Aerodynamics (99292.8); 
Pressure distribution - Wings (74500) 

Ofvtcjoc^ LikjclIpcsiCO Deportment 
Atr AActertef Cesaaoad 

ßlQ YCCKMICAL IWÖtUt 
RESTRICTED 

Dayton, OWr 



TITLE:  Aerofoil Theory of a Flat Delta Wing at Supersonic Speeds 

AUTHOR(S):  Robinson, A. 
ORIGINATING AGENCY: Royal Aircraft Establishment, Farnborough, Hants 
PUBLISHED BY:   (Same) 

AYO- 9106 

(None) 

ruauSMKS AOfxcv HO. 

 (Same) 
can .|    nccun couwnrr 

Sept '46     |    Restr. Gt. Brit. Eng. 
PAOB     I   lUUSlBATlONS 
31    I diagrs, graphs 

ABSTRACT: U 
Lift, drag, and pressure distribution of a flat Delta wing moving at small incidence at 
supersonic speeds are given for arbitrary Mach number and aspect ratio. The lift and 
drag values obtained are compared with corresponding strip theory values. The possi- 
bility of further applications of the analysis leading up to the above results is indicated. 
The calculations are a counterpart of the treatment of Laplace's equation by systems of 
orthogonal coordinates. 

DISTRIBUTION:  Copies of this report obtainable from Air Documents Division; Attn:  MCIDXD 
DIVISION: 
SECTION: 

Aerodynamics (2) 
Wings and Airfoils (6) 

ATI SHEET NO.:   R-2-6-1&2 

SUBJECT HEADINGS:   Wings, Delta - Aerodynamics (99252.8); 
Pressure distribution - Wings (74500) 

Air Documenta DM=4on, Irttclllscaco Department 
AJr Materiel Command 

AIQ 7CCHNICAL INDEX Wrlnht-Pattorsao Air Forco I 
Dayton, Ohk 



SC?-X.  AUTH: DOD DIR 5200.10,  29 JusM  «fi 

EO  5O501  dd 5  NOV   1953 




